Analytical Solution for the Generalized Fermat-Torricelli Problem
Abstract
We present explicit analytical solution for the problem of minimization of the function $ F(x,y)= \sum_{j=1}^3 m_j \sqrt{(x-x_j)^2+(y-y_j)^2} $, i.e. we find the coordinates of stationary point and the corresponding critical value of $ F(x,y) $ as functions of $ {m_j,x_j,y_j}_{j=1}^3 $. In addition, we also discuss inverse problem of finding such values of $ m_1,m_2,m_3 $ with the aim for the corresponding function $ F $ to posses a prescribed position of stationary point.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2012
- DOI:
- arXiv:
- arXiv:1208.3324
- Bibcode:
- 2012arXiv1208.3324U
- Keywords:
-
- Computer Science - Computational Geometry;
- 68W30;
- 14Q20;
- G.1.6;
- I.1.2;
- I.3.5
- E-Print:
- 15 pages, 3 figures