Evaluation of the convolution sums $\sum_{l+15m=n} \sigma(l) \sigma(m)$ and $\sum_{3l+5m=n} \sigma(l) \sigma(m)$ and some applications
Abstract
We evaluate the convolution sums $\sum_{l,m\in {\mathbb N}, {l+15m=n}} \sigma(l) \sigma(m)$ and $\sum_{l,m\in {\mathbb N}, {3l+5m=n}} \sigma(l) \sigma(m)$ for all $n\in {\mathbb N}$ using the theory of quasimodular forms and use these convolution sums to determine the number of representations of a positive integer $n$ by the form $$ x_1^2 + x_1x_2 + x_2^2 + x_3^2 + x_3x_4 + x_4^2 + 5 (x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2). $$ We also determine the number of representations of positive integers by the quadratic form $$ x_1^2 + x_2^2+x_3^2+x_4^2 + 6 (x_5^2+x_6^2+x_7^2+x_8^2), $$ by using the convolution sums obtained earlier by Alaca, Alaca and Williams \cite{{aw3}, {aw4}}.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2012
- DOI:
- 10.48550/arXiv.1207.5107
- arXiv:
- arXiv:1207.5107
- Bibcode:
- 2012arXiv1207.5107R
- Keywords:
-
- Mathematics - Number Theory;
- Primary 11A25;
- 11F11;
- Secondary 11E20;
- 11E25;
- 11F20
- E-Print:
- To appear in IJNT