On three-color Ramsey number of paths
Abstract
Let $G_1, G_2, ..., G_t$ be graphs. The multicolor Ramsey number $R(G_1, G_2, ..., G_t)$ is the smallest positive integer $n$ such that if the edges of complete graph $K_n$ are partitioned into $t$ disjoint color classes giving $t$ graphs $H_1,H_2,...,H_t$, then at least one $H_i$ has a subgraph isomorphic to $G_i$. In this paper, we prove that if $(n,m)\neq (3,3), (3,4)$ and $m\geq n$, then $R(P_3,P_n,P_m)=R(P_n,P_m)=m+\lfloor \frac{n}{2}\rfloor-1$. Consequently $R(P_3,mK_2,nK_2)=2m+n-1$ for $m\geq n\geq 3$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2012
- DOI:
- 10.48550/arXiv.1207.3771
- arXiv:
- arXiv:1207.3771
- Bibcode:
- 2012arXiv1207.3771M
- Keywords:
-
- Mathematics - Combinatorics