Maximum Margin Bayesian Networks
Abstract
We consider the problem of learning Bayesian network classifiers that maximize the marginover a set of classification variables. We find that this problem is harder for Bayesian networks than for undirected graphical models like maximum margin Markov networks. The main difficulty is that the parameters in a Bayesian network must satisfy additional normalization constraints that an undirected graphical model need not respect. These additional constraints complicate the optimization task. Nevertheless, we derive an effective training algorithm that solves the maximum margin training problem for a range of Bayesian network topologies, and converges to an approximate solution for arbitrary network topologies. Experimental results show that the method can demonstrate improved generalization performance over Markov networks when the directed graphical structure encodes relevant knowledge. In practice, the training technique allows one to combine prior knowledge expressed as a directed (causal) model with state of the art discriminative learning methods.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2012
- DOI:
- 10.48550/arXiv.1207.1382
- arXiv:
- arXiv:1207.1382
- Bibcode:
- 2012arXiv1207.1382G
- Keywords:
-
- Computer Science - Machine Learning;
- Statistics - Machine Learning
- E-Print:
- Appears in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005)