High-Dimensional Covariance Decomposition into Sparse Markov and Independence Domains
Abstract
In this paper, we present a novel framework incorporating a combination of sparse models in different domains. We posit the observed data as generated from a linear combination of a sparse Gaussian Markov model (with a sparse precision matrix) and a sparse Gaussian independence model (with a sparse covariance matrix). We provide efficient methods for decomposition of the data into two domains, \viz Markov and independence domains. We characterize a set of sufficient conditions for identifiability and model consistency. Our decomposition method is based on a simple modification of the popular $\ell_1$-penalized maximum-likelihood estimator ($\ell_1$-MLE). We establish that our estimator is consistent in both the domains, i.e., it successfully recovers the supports of both Markov and independence models, when the number of samples $n$ scales as $n = \Omega(d^2 \log p)$, where $p$ is the number of variables and $d$ is the maximum node degree in the Markov model. Our conditions for recovery are comparable to those of $\ell_1$-MLE for consistent estimation of a sparse Markov model, and thus, we guarantee successful high-dimensional estimation of a richer class of models under comparable conditions. Our experiments validate these results and also demonstrate that our models have better inference accuracy under simple algorithms such as loopy belief propagation.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2012
- DOI:
- 10.48550/arXiv.1206.6382
- arXiv:
- arXiv:1206.6382
- Bibcode:
- 2012arXiv1206.6382J
- Keywords:
-
- Computer Science - Machine Learning;
- Statistics - Machine Learning
- E-Print:
- Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012)