Functions of perturbed tuples of self-adjoint operators
Abstract
We generalize earlier results of Aleksandrov and Peller (2010) [2,3], Aleksandrov et al. (2011) [6], Peller (1985) [13], Peller (1990) [14] to the case of functions of n-tuples of commuting self-adjoint operators. In particular, we prove that if a function f belongs to the Besov space B∞,11 (Rn), then f is operator Lipschitz and we show that if f satisfies a Hölder condition of order α, then ‖ f (A1 , … ,An) - f (B1 , … ,Bn) ‖ ⩽ constmax 1 ⩽ j ⩽ n ‖Aj -Bj‖α for all n-tuples of commuting self-adjoint operators (A1 , … ,An) and (B1 , … ,Bn). We also consider the case of arbitrary moduli of continuity and the case when the operators Aj -Bj belong to the Schatten-von Neumann class Sp.
- Publication:
-
Comptes Rendus Mathematique
- Pub Date:
- April 2012
- DOI:
- arXiv:
- arXiv:1204.5134
- Bibcode:
- 2012CRMat.350..349N
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Complex Variables;
- Mathematics - Spectral Theory
- E-Print:
- 6 pages