On shape dependence and RG flow of entanglement entropy
Abstract
We use a mix of field theoretic and holographic techniques to elucidate various properties of quantum entanglement entropy. In (3 + 1)-dimensional conformal field theory we study the divergent terms in the entropy when the entangling surface has a conical or a wedge singularity. In (2 + 1)-dimensional field theory with a mass gap we calculate, for an arbitrary smooth entanglement contour, the expansion of the entropy in inverse odd powers of the mass. We show that the shape-dependent coefficients that arise are even powers of the extrinsic curvature and its derivatives. A useful dual construction of a (2 + 1)-dimensional theory, which allows us to exhibit these properties, is provided by the CGLP background. This smooth warped throat solution of 11-dimensional supergravity describes renormalization group flow from a conformal field theory in the UV to a gapped one in the IR. For this flow we calculate the recently introduced renormalized entanglement entropy and confirm that it is a monotonic function.
- Publication:
-
Journal of High Energy Physics
- Pub Date:
- July 2012
- DOI:
- arXiv:
- arXiv:1204.4160
- Bibcode:
- 2012JHEP...07..001K
- Keywords:
-
- Field Theories in Lower Dimensions;
- AdS-CFT Correspondence;
- Renormalization Group;
- High Energy Physics - Theory;
- Condensed Matter - Statistical Mechanics;
- Quantum Physics
- E-Print:
- 30 pages, 8 figures