Derivative chameleons
Abstract
We consider generalized chameleon models where the conformal coupling between matter and gravitational geometries is not only a function of the chameleon field phi, but also of its derivatives via higher order co-ordinate invariants (such as ∂μphi∂μphi,squphi,...). Specifically we consider the first such non-trivial conformal factor A(phi,∂μphi∂μphi). The associated phenomenology is investigated and we show that such theories have a new generic mass-altering mechanism, potentially assisting the generation of a sufficiently large chameleon mass in dense environments. The most general effective potential is derived for such derivative chameleon setups and explicit examples are given. Interestingly this points us to the existence of a purely derivative chameleon protected by a shift symmetry for phi → phi+c. We also discuss potential ghost-like instabilities associated with mass-lifting mechanisms and find another, mass-lowering and instability-free, branch of solutions. This suggests that, barring fine-tuning, stable derivative models are in fact typically anti-chameleons that suppress the field's mass in dense environments. Furthermore we investigate modifications to the thin-shell regime and prove a no-go theorem for chameleon effects in non-conformal geometries of the disformal type.
- Publication:
-
Journal of Cosmology and Astroparticle Physics
- Pub Date:
- July 2012
- DOI:
- arXiv:
- arXiv:1203.6639
- Bibcode:
- 2012JCAP...07..013N
- Keywords:
-
- General Relativity and Quantum Cosmology;
- Astrophysics - Cosmology and Extragalactic Astrophysics;
- High Energy Physics - Phenomenology;
- High Energy Physics - Theory
- E-Print:
- 28 pages, 4 figures