Chaotifying Continuous-Time Nonlinear Autonomous Systems
Abstract
Based on the principle of chaotification for continuous-time autonomous systems, which relies on two basic properties of chaos, i.e., globally bounded with necessary positive-zero-negative Lyapunov exponents, this paper derives a feasible and unified chaotification method of designing a general chaotic continuous-time autonomous nonlinear system. For a system consisting of a linear and a nonlinear subsystem, chaotification is achieved using separation of state variables, which decomposes the system into two open-loop subsystems interacting through mutual feedback resulting in an overall closed-loop nonlinear feedback system. Under the condition that the nonlinear feedback control output is uniformly bounded where the nonlinear function is of bounded-input/bounded-output, it is proved that the resulting system is chaotic in the sense of being globally bounded with a required placement of Lyapunov exponents. Several numerical examples are given to verify the effectiveness of the theoretical design. Since linear systems are special cases of nonlinear systems, the new method is also applicable to linear systems in general.
- Publication:
-
International Journal of Bifurcation and Chaos
- Pub Date:
- September 2012
- DOI:
- 10.1142/S021812741250232X
- arXiv:
- arXiv:1203.5940
- Bibcode:
- 2012IJBC...2250232Y
- Keywords:
-
- Nonlinear Sciences - Chaotic Dynamics;
- Mathematics - Dynamical Systems
- E-Print:
- 17 pages, 11 figures