For which positive $p$ is the integral Menger curvature $\mathcal{M}_{p}$ finite for all simple polygons?
Abstract
In this brief note we show that the integral Menger curvature $\mathcal{M}_{p}$ is finite for all simple polygons if and only if $p\in (0,3)$. For the intermediate energies $\mathcal{I}_{p}$ and $\mathcal{U}_{p}$ we obtain the analogous result for $p\in (0,2)$ and $p\in (0,1)$, respectively.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2012
- DOI:
- arXiv:
- arXiv:1202.0504
- Bibcode:
- 2012arXiv1202.0504S
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Metric Geometry;
- 28A75;
- 53A04
- E-Print:
- 9 pages