Cuntz-Krieger algebras associated with Hilbert $C^*$-quad modules of commuting matrices
Abstract
Let ${\cal O}_{{\cal H}^{A,B}_\kappa}$ be the $C^*$-algebra associated with the Hilbert $C^*$-quad module arising from commuting matrices $A,B$ with entries in $\{0,1\}$. We will show that if the associated tiling space $X_{A,B}^\kappa$ is transitive, the $C^*$-algebra ${\cal O}_{{\cal H}^{A,B}_\kappa}$ is simple and purely infinite. In particulr, for two positive integers $N,M$, the $K$-groups of the simple purely infinite $C^*$-algebra ${\cal O}_{{\cal H}^{[N],[M]}_\kappa}$ are computed by using the Euclidean algorithm.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2012
- DOI:
- 10.48550/arXiv.1201.1056
- arXiv:
- arXiv:1201.1056
- Bibcode:
- 2012arXiv1201.1056M
- Keywords:
-
- Mathematics - Operator Algebras;
- 46L35
- E-Print:
- 19 pages