Detection of Potential Transit Signals in the First Three Quarters of Kepler Mission Data
Abstract
We present the results of a search for potential transit signals in the first three quarters of photometry data acquired by the Kepler mission. The targets of the search include 151,722 stars which were observed over the full interval and an additional 19,132 stars which were observed for only one or two quarters. From this set of targets we find a total of 5392 detections which meet the Kepler detection criteria: those criteria are periodicity of signal, an acceptable signal-to-noise ratio, and a composition test which rejects spurious detections which contain non-physical combinations of events. The detected signals are dominated by events with relatively low signal-to-noise ratio and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 40 and 100 parts per million, with a few detections down to fewer than 10 parts per million. The detections exhibit signal-to-noise ratios from 7.1σ, which is the lower cutoff for detections, to over 10,000σ, and periods ranging from 0.5 days, which is the lower cutoff used in the procedure, to 109 days, which is the upper limit of achievable periods given the length of the data set and the criteria used for detections. The detected signals are compared to a set of known transit events in the Kepler field of view which were derived by a different method using a longer data interval; the comparison shows that the current search correctly identified 88.1% of the known events. A tabulation of the detected transit signals, examples which illustrate the analysis and detection process, a discussion of future plans and open, potentially fruitful, areas of further research are included.
- Publication:
-
The Astrophysical Journal Supplement Series
- Pub Date:
- March 2012
- DOI:
- arXiv:
- arXiv:1201.1048
- Bibcode:
- 2012ApJS..199...24T
- Keywords:
-
- planetary systems;
- planets and satellites: detection;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- Astrophysical Journal Supplement 199, 24 (2012)