Higher $K$-Groups of Smooth Projective Curves Over Finite Fields
Abstract
Let $X$ be a smooth projective curve over a finite field $\mathbb{F}$ with $q$ elements. For $m\geq 1,$ let $X_m$ be the curve $X$ over the finite field $\mathbb{F}_m$, the $m$-th extension of $\mathbb{F}.$ Let $K_n(m)$ be the $K$-group $K_n(X_m)$ of the smooth projective curve $X_m.$ In this paper, we study the structure of the groups $K_n(m).$ If $l$ is a prime, we establish an analogue of Iwasawa theorem in algebraic number theory for the orders of the $l$-primary part $K_n(l^m)\{l\}$ of $K_n(l^m)$. In particular, when $X$ is an elliptic curve $E$ defined over $\mathbb{F},$ our method determines the structure of $K_n(E).$ Our results can be applied to construct an efficient {\bf DL} system in elliptic cryptography.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2011
- DOI:
- 10.48550/arXiv.1112.5920
- arXiv:
- arXiv:1112.5920
- Bibcode:
- 2011arXiv1112.5920J
- Keywords:
-
- Mathematics - Number Theory
- E-Print:
- 20 page, 8 tables