Continuous Measurement Quantum State Tomography of Atomic Ensembles
Abstract
Quantum state tomography is a fundamental tool in quantum information processing. It allows us to estimate the state of a quantum system by measuring different observables on many identically prepared copies of the system. This is, in general, a very time-consuming task that requires a large number of measurements. There are, however, systems in which the data acquisition can be done more efficiently. In fact, an ensemble of quantum systems can be prepared and manipulated by external fields while being continuously and collectively probed, producing enough information to estimate its state. This provides a basis for continuous measurement quantum tomography. In this protocol, an ensemble of identically prepared systems is collectively probed and controlled in a time-dependent manner to create an informationally complete continuous measurement record. The measurement history is then inverted to determine the state at the initial time. We use two different estimation methods: maximum likelihood and compressed sensing. The general formalism is applied to the case of reconstruction of the quantum state encoded in the magnetic sub-levels of a large-spin alkali atom, ${}^{133}$Cs. We apply this protocol to the case of reconstruction of states in the full 16-dimensional electronic-ground subspace ($F=3 \oplus F=4$), controlled by microwaves and radio-frequency magnetic fields. We present an experimental demonstration of continuous measurement quantum tomography in an ensemble of cold cesium atoms with full control of its 16-dimensional Hilbert space. We show the exquisite level of control achieved in the lab and the excellent agreement between the theory discussed in this dissertation and the experimental results. This allows us to achieve fidelities >95% for low complexity quantum states, and >92% for arbitrary random states, which is a formidable accomplishment for a space of this size.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2011
- DOI:
- arXiv:
- arXiv:1111.5627
- Bibcode:
- 2011arXiv1111.5627R
- Keywords:
-
- Quantum Physics
- E-Print:
- Ph.D. Dissertation