A reflexive HI space with the hereditary Invariant Subspace Property
Abstract
A reflexive hereditarily indecomposable Banach space $\mathfrak{X}_{_{^\text{ISP}}}$ is presented, such that for every $Y$ infinite dimensional closed subspace of $\mathfrak{X}_{_{^\text{ISP}}}$ and every bounded linear operator $T:Y\rightarrow Y$, the operator $T$ admits a non-trivial closed invariant subspace.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2011
- DOI:
- 10.48550/arXiv.1111.3603
- arXiv:
- arXiv:1111.3603
- Bibcode:
- 2011arXiv1111.3603A
- Keywords:
-
- Mathematics - Functional Analysis;
- Mathematics - Operator Algebras;
- 46B03;
- 46B06;
- 46B25;
- 46B45;
- 47A15
- E-Print:
- 43 pages, no figures. An updated version