Concentration of solutions for a fourth order elliptic equation in $\mathbb{R}^N$
Abstract
In this paper, we study the following fourth order elliptic problem $$ \Delta^2 u=(1+\epsilon K(x)) u^{2^*-1}, \quad x\in \mathbb{R}^N $$ where $2^*=\frac{2N}{N-4}$,$N\geq5$, $ \epsilon>0$. We prove that the existence of two peaks solutions for the above problem, if $K(x)$ has two critical points satisfying certain conditions, provided $\epsilon$ is small enough.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2011
- DOI:
- 10.48550/arXiv.1111.2712
- arXiv:
- arXiv:1111.2712
- Bibcode:
- 2011arXiv1111.2712Z
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Primary 35\mathrm{J}60;
- \ Secondary 35\mathrm{J}65;
- 58\mathrm{E05}
- E-Print:
- 19 pages