Asymptotics of the number of threshold functions on a two-dimensional rectangular grid
Abstract
Let $m,n\ge 2$, $m\le n$. It is well-known that the number of (two-dimensional) threshold functions on an $m\times n$ rectangular grid is {eqnarray*} t(m,n)=\frac{6}{\pi^2}(mn)^2+O(m^2n\log{n})+O(mn^2\log{\log{n}})= \frac{6}{\pi^2}(mn)^2+O(mn^2\log{m}). {eqnarray*} We improve the error term by showing that $$ t(m,n)=\frac{6}{\pi^2}(mn)^2+O(mn^2). $$
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2011
- DOI:
- 10.48550/arXiv.1110.3566
- arXiv:
- arXiv:1110.3566
- Bibcode:
- 2011arXiv1110.3566H
- Keywords:
-
- Mathematics - Combinatorics;
- Computer Science - Information Theory;
- Mathematics - Logic;
- Mathematics - Number Theory;
- 03B50;
- 05A99;
- 11N37;
- 11P21