Trivial Central Extensions of Lie Bialgebras
Abstract
From a Lie algebra $\mathfrak{g}$ satisfying $\mathcal{Z}(\mathfrak{g})=0$ and $\Lambda^2(\mathfrak{g})^\mathfrak{g}=0$ (in particular, for $\g$ semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form $\mathfrak{L} =\mathfrak{g}\times \mathbb{K}$ in terms of Lie bialgebra structures on $\mathfrak{g}$ (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field $\mathbb{K}$ with char $\mathbb{K}=0$. If moreover, $[\mathfrak{g},\mathfrak{g}]=\mathfrak{g}$, then we describe also all Lie bialgebra structures on extensions $\mathfrak{L} =\mathfrak{g}\times \mathbb{K}^n$. In interesting cases we characterize the Lie algebra of biderivations.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2011
- DOI:
- arXiv:
- arXiv:1110.1072
- Bibcode:
- 2011arXiv1110.1072F
- Keywords:
-
- Mathematics - Quantum Algebra;
- 17B62 (Primary);
- 81R50 17B40 (Secondary)
- E-Print:
- 23 pages