Generalized Ramanujan Primes
Abstract
In 1845, Bertrand conjectured that for all integers $x\ge2$, there exists at least one prime in $(x/2, x]$. This was proved by Chebyshev in 1860, and then generalized by Ramanujan in 1919. He showed that for any $n\ge1$, there is a (smallest) prime $R_n$ such that $\pi(x)- \pi(x/2) \ge n$ for all $x \ge R_n$. In 2009 Sondow called $R_n$ the $n$th Ramanujan prime and proved the asymptotic behavior $R_n \sim p_{2n}$ (where $p_m$ is the $m$th prime). In the present paper, we generalize the interval of interest by introducing a parameter $c \in (0,1)$ and defining the $n$th $c$-Ramanujan prime as the smallest integer $R_{c,n}$ such that for all $x\ge R_{c,n}$, there are at least $n$ primes in $(cx,x]$. Using consequences of strengthened versions of the Prime Number Theorem, we prove that $R_{c,n}$ exists for all $n$ and all $c$, that $R_{c,n} \sim p_{\frac{n}{1-c}}$ as $n\to\infty$, and that the fraction of primes which are $c$-Ramanujan converges to $1-c$. We then study finer questions related to their distribution among the primes, and see that the $c$-Ramanujan primes display striking behavior, deviating significantly from a probabilistic model based on biased coin flipping; this was first observed by Sondow, Nicholson, and Noe in the case $c = 1/2$. This model is related to the Cramer model, which correctly predicts many properties of primes on large scales, but has been shown to fail in some instances on smaller scales.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2011
- DOI:
- 10.48550/arXiv.1108.0475
- arXiv:
- arXiv:1108.0475
- Bibcode:
- 2011arXiv1108.0475A
- Keywords:
-
- Mathematics - Number Theory;
- 11A41
- E-Print:
- 13 pages, 2 tables, to appear in the CANT 2011 Conference Proceedings. This is version 2.0. Changes: fixed typos, added references to OEIS sequences, and cited Shevelev's preprint