Multiple Commutator Formulas
Abstract
Let A be a quasi-finite R-algebra (i.e., a direct limit of module finite algebras) with identity. Let I_i, i=0,...,m, be two-sided ideals of A, \GL_n(A,I_i) the principal congruence subgroup of level I_i in GL_n(A) and E_n(A,I_i) be the relative elementary subgroup of level I_i. We prove a multiple commutator formula [E_n(A,I_0),\GL_n(A,I_1),& \GL_n(A, I_2),..., \GL_n(A, I_m)] = [E_n(A,I_0),E_n(A,I_1),E_n(A, I_2),..., E_n(A, I_m)], which is a broad generalization of the standard commutator formulas.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2011
- DOI:
- 10.48550/arXiv.1107.3056
- arXiv:
- arXiv:1107.3056
- Bibcode:
- 2011arXiv1107.3056H
- Keywords:
-
- Mathematics - Rings and Algebras