Hyperfine characterization and spin coherence lifetime extension in Pr3+:La2(WO4)3
Abstract
Rare-earth ions in dielectric crystals are interesting candidates for storing quantum states of photons. A limiting factor on the optical density and thus the conversion efficiency is the distortion introduced in the crystal by doping elements of one type into a crystal matrix of another type. Here we investigate the system Pr3+:La2(WO4)3, where the similarity of the ionic radii of Pr and La minimizes distortions due to doping. We characterize the praseodymium hyperfine interaction of the ground-state (3H4) and one excited state (1D2) and determine the spin Hamiltonian parameters by numerical analysis of Raman-heterodyne spectra, which were collected for a range of static external magnetic-field strengths and orientations. On the basis of a crystal-field analysis, we discuss the physical origin of the experimentally determined quadrupole and Zeeman tensor characteristics. We show the potential for quantum memory applications by measuring the spin coherence lifetime in a magnetic field that is chosen such that additional magnetic fields do not shift the transition frequency in first order. Experimental results demonstrate a spin coherence lifetime of 158 ms — almost 3 orders of magnitude longer than in zero field.
- Publication:
-
Physical Review B
- Pub Date:
- September 2011
- DOI:
- arXiv:
- arXiv:1107.2274
- Bibcode:
- 2011PhRvB..84j4417L
- Keywords:
-
- 42.50.Md;
- 76.30.Kg;
- 76.70.Hb;
- 76.60.-k;
- Optical transient phenomena: quantum beats photon echo free-induction decay dephasings and revivals optical nutation and self-induced transparency;
- Rare-earth ions and impurities;
- Optically detected magnetic resonance;
- Nuclear magnetic resonance and relaxation;
- Quantum Physics
- E-Print:
- 14 pages, 6 figures