Hausdorff limits of Rolle leaves
Abstract
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document} be an o-minimal expansion of the real field. We introduce a class of Hausdorff limits, the T∞-limits over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document}, that do not in general fall under the scope of Marker and Steinhorn's definability-of-types theorem. We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document} admits analytic cell decomposition, then every T∞-limit over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document} is definable in the pfaffian closure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document}.
- Publication:
-
Revista Real Acad. Ciencias Exact. Fis. Nat. Madrid
- Pub Date:
- March 2013
- DOI:
- 10.1007/s13398-012-0089-z
- arXiv:
- arXiv:1107.0648
- Bibcode:
- 2013RvMad.107...79L
- Keywords:
-
- O-minimal structures;
- Pfaffian systems;
- Analytic stratification;
- Hausdorff limits;
- Primary 14P10;
- 58A17;
- Secondary 03C99;
- Mathematics - Logic;
- Mathematics - Differential Geometry;
- Primary 14P15;
- 58A17;
- Secondary 03C64
- E-Print:
- 12 pages