On the nilpotent commutator of a nilpotent matrix
Abstract
We study the structure of the nilpotent commutator $\nb$ of a nilpotent matrix $B$. We show that $\nb$ intersects all nilpotent orbits for conjugation if and only if $B$ is a square--zero matrix. We describe nonempty intersections of $\nb$ with nilpotent orbits in the case the $n \times n$ matrix $B$ has rank $n-2$. Moreover, we give some results on the maximal nilpotent orbit that $\nb$ intersects nontrivially.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2011
- DOI:
- 10.48550/arXiv.1106.1545
- arXiv:
- arXiv:1106.1545
- Bibcode:
- 2011arXiv1106.1545O
- Keywords:
-
- Mathematics - Rings and Algebras;
- 15A27;
- 14L30;
- 15A21
- E-Print:
- 14 pages