Densité de demi-horocycles sur une surface hyperbolique géométriquement infinie
Abstract
On the unit tangent bundle of a hyperbolic surface, we study the density of positive orbits $(h^s v)_{s\ge 0}$ under the horocyclic flow. More precisely, given a full orbit $(h^sv)_{s\in \R}$, we prove that under a weak assumption on the vector $v$, both half-orbits $(h^sv)_{s\ge 0}$ and $(h^s v)_{s\le 0}$ are simultaneously dense or not in the nonwandering set $\mathcal{E}$ of the horocyclic flow. We give also a counter-example to this result when this assumption is not satisfied.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2011
- DOI:
- arXiv:
- arXiv:1103.0443
- Bibcode:
- 2011arXiv1103.0443S
- Keywords:
-
- Mathematics - Dynamical Systems
- E-Print:
- 13 pages, 6 figures