On sums involving products of three binomial coefficients
Abstract
In this paper we mainly employ the Zeilberger algorithm to study congruences for sums of terms involving products of three binomial coefficients. Let $p>3$ be a prime. We prove that $$\sum_{k=0}^{p-1}\frac{\binom{2k}k^2\binom{2k}{k+d}}{64^k}\equiv 0\pmod{p^2}$$ for all $d\in\{0,\ldots,p-1\}$ with $d\equiv (p+1)/2\pmod2$. If $p\equiv 1\pmod4$ and $p=x^2+y^2$ with $x\equiv 1\pmod4$ and $y\equiv 0\pmod2$, then we show $$\sum_{k=0}^{p-1}\frac{\binom{2k}k^2\binom{2k}{k+1}}{(-8)^k}\equiv 2p-2x^2\pmod{p^2}\ \ \mbox{and}\ \ \sum_{k=0}^{p-1}\frac{\binom{2k}k\binom{2k}{k+1}^2}{(-8)^k}\equiv-2p\pmod{p^2}$$ by means of determining $x$ mod $p^2$ via $$(-1)^{(p-1)/4}\,x\equiv\sum_{k=0}^{(p-1)/2}\frac{k+1}{8^k}\binom{2k}k^2\equiv\sum_{k=0}^{(p-1)/2}\frac{2k+1}{(-16)^k}\binom{2k}k^2\pmod{p^2}.$$ We also solve the remaining open cases of Rodriguez-Villegas' conjectural congruences on $$\sum_{k=0}^{p-1}\frac{\binom{2k}k^2\binom{3k}k}{108^k},\ \ \sum_{k=0}^{p-1}\frac{\binom{2k}k^2\binom{4k}{2k}}{256^k}, \ \ \sum_{k=0}^{p-1}\frac{\binom{2k}{k}\binom{3k}k\binom{6k}{3k}}{12^{3k}}$$ modulo $p^2$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2010
- DOI:
- arXiv:
- arXiv:1012.3141
- Bibcode:
- 2010arXiv1012.3141S
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Combinatorics;
- 11B65;
- 11B65;
- 05A10;
- 11A07;
- 11E25
- E-Print:
- 21 pages, final published version