Metric flips with Calabi ansatz
Abstract
We study the limiting behavior of the Kahler-Ricci flow on $\mathbb{P}(\mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus (m+1)})$, assuming the initial metric satisfies the Calabi symmetry. We show that the flow either shrinks to a point, collapses to $\mathbb{P}^n$ or contracts a subvariety of codimension m+1 in Gromov-Hausdorff sense. We also show that the Kahler-Ricci flow resolves certain type of conical singularities in Gromov-Hausdorff sense.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2010
- DOI:
- arXiv:
- arXiv:1011.1608
- Bibcode:
- 2010arXiv1011.1608S
- Keywords:
-
- Mathematics - Differential Geometry