Isoscalar dipole coherence at low energies and forbidden E1 strength
Abstract
In 16O and 40Ca an isoscalar, low-energy dipole transition (IS-LED) exhausting approximately 4% of the isoscalar dipole (ISD) energy-weighted sum rule is experimentally known, but conspicuously absent from recent theoretical investigations of ISD strength. The IS-LED mode coincides with the so-called isospin-forbidden E1 transition. We report that for N = Z nuclei up to 100Sn the fully self-consistent Random-Phase Approximation (RPA) with finite-range forces, phenomenological and realistic, yields a collective IS-LED mode, typically overestimating its excitation energy, but correctly describing its IS strength and electroexcitation form factor. The presence of E1 strength is solely due to the Coulomb interaction between the protons and the resulting isospin-symmetry breaking. The smallness of its value is related to the form of the transition density, due to translational invariance. The calculated values of E1 and ISD strength carried by the IS-LED depend on the effective interaction used. Attention is drawn to the possibility that in N
- Publication:
-
European Physical Journal A
- Pub Date:
- January 2011
- DOI:
- 10.1140/epja/i2011-11014-7
- arXiv:
- arXiv:1011.1162
- Bibcode:
- 2011EPJA...47...14P
- Keywords:
-
- Form Factor;
- Transition Density;
- Symmetry Energy;
- Giant Dipole Resonance;
- Compression Mode;
- Nuclear Theory;
- Nuclear Experiment
- E-Print:
- 9 pages, 6 figures, EPJA submitted