A field-theoretic approach to non-equilibrium work identities
Abstract
We study non-equilibrium work relations for a space-dependent field with stochastic dynamics (model A). Jarzynski's equality is obtained through symmetries of the dynamical action in the path-integral representation. We derive a set of exact identities that generalize the fluctuation-dissipation relations to non-stationary and far-from-equilibrium situations. These identities are prone to experimental verification. Furthermore, we show that a well-studied invariance of the Langevin equation under supersymmetry, which is known to be broken when the external potential is time dependent, can be partially restored by adding to the action a term which is precisely Jarzynski's work. The work identities can then be retrieved as consequences of the associated Ward-Takahashi identities.
- Publication:
-
Journal of Physics A Mathematical General
- Pub Date:
- March 2011
- DOI:
- 10.1088/1751-8113/44/9/095002
- arXiv:
- arXiv:1009.4800
- Bibcode:
- 2011JPhA...44i5002M
- Keywords:
-
- Condensed Matter - Statistical Mechanics;
- Mathematical Physics
- E-Print:
- 15 pages