Symmetry properties of subdivision graphs
Abstract
The subdivision graph $S(\Sigma)$ of a graph $\Sigma$ is obtained from $\Sigma$ by `adding a vertex' in the middle of every edge of $\Si$. Various symmetry properties of $§(\Sigma)$ are studied. We prove that, for a connected graph $\Sigma$, $S(\Sigma)$ is locally $s$-arc transitive if and only if $\Sigma$ is $\lceil\frac{s+1}{2}\rceil$-arc transitive. The diameter of $S(\Sigma)$ is $2d+\delta$, where $\Sigma$ has diameter $d$ and $0\leqslant \delta\leqslant 2$, and local $s$-distance transitivity of $§(\Sigma)$ is defined for $1\leqslant s\leqslant 2d+\delta$. In the general case where $s\leqslant 2d-1$ we prove that $S(\Sigma)$ is locally $s$-distance transitive if and only if $\Sigma$ is $\lceil\frac{s+1}{2}\rceil$-arc transitive. For the remaining values of $s$, namely $2d\leqslant s\leqslant 2d+\delta$, we classify the graphs $\Sigma$ for which $S(\Sigma)$ is locally $s$-distance transitive in the cases, $s\leqslant 5$ and $s\geqslant 15+\delta$. The cases $\max\{2d, 6\}\leqslant s\leqslant \min\{2d+\delta, 14+\delta\}$ remain open.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2010
- DOI:
- arXiv:
- arXiv:1008.2261
- Bibcode:
- 2010arXiv1008.2261D
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Combinatorics