Derived $H$-module endomorphism rings
Abstract
Let $H$ be a Hopf algebra, $A/B$ be an $H$-Galois extension. Let $D(A)$ and $D(B)$ be the derived categories of right $A$-modules and of right $B$-modules respectively. An object $M^\cdot\in D(A)$ may be regarded as an object in $D(B)$ via the restriction functor. We discuss the relations of the derived endomorphism rings $E_A(M^\cdot)=\op_{i\in\mathbb{Z}}\Hom_{D(A)}(M^\cdot,M^\cdot[i])$ and $E_B(M^\cdot)=\op_{i\in\mathbb{Z}}\Hom_{D(B)}(M^\cdot,M^\cdot[i])$. If $H$ is a finite dimensional semisimple Hopf algebra, then $E_A(M^\cdot)$ is a graded subalgebra of $E_B(M^\cdot)$. In particular, if $M$ is a usual $A$-module, a necessary and sufficient condition for $E_B(M)$ to be an $H^*$-Galois graded extension of $E_A(M)$ is obtained. As an application of the results, we show that the Koszul property is preserved under Hopf Galois graded extensions.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2010
- DOI:
- 10.48550/arXiv.1007.4975
- arXiv:
- arXiv:1007.4975
- Bibcode:
- 2010arXiv1007.4975H
- Keywords:
-
- Mathematics - Rings and Algebras;
- Mathematics - K-Theory and Homology;
- 16E45;
- 16E40;
- 16W50
- E-Print:
- to appear at Glasgow Mathematical Journal