Arens Regularity And Factorization Property
Abstract
In this paper, we will study some Arens regularity properties of module actions. Let $B$ be a Banach $A-bimodule$ and let ${Z}^\ell_{B^{**}}(A^{**})$ and ${Z}^\ell_{A^{**}}(B^{**})$ be the topological centers of the left module action $\pi_\ell:~A\times B\rightarrow B$ and the right module action $\pi_r:~B\times A\rightarrow B$, respectively. In this paper, we will extend some problems from topological center of second dual of Banach algebra $A$, $Z_1(A^{**})$, into spaces ${Z}^\ell_{B^{**}}(A^{**})$ and ${Z}^\ell_{A^{**}}(B^{**})$. We investigate some relationships between ${Z}_1({A^{**}})$ and topological centers of module actions. For an unital Banach $A-module$ $B$ we show that ${Z}^\ell_{A^{**}}(B^{**}){Z}_1({A^{**}})={Z}^\ell_{A^{**}}(B^{**})$ and as results in group algebras, for locally compact group $G$, we have ${Z}^\ell_{{L^1(G)}^{**}}(M(G)^{**})M(G)={Z}^\ell_{{L^1(G)}^{**}}(M(G)^{**})$ and ${Z}^\ell_{M(G)^{**}}({L^1(G)}^{**})M(G)={Z}^\ell_{M(G)^{**}}({L^1(G)}^{**})$. For Banach $A-bimodule$ $B$, if we assume that $B^*B^{**}\subseteq A^*$, then $~B^{**}{Z}_1(A^{**})\subseteq {Z}^\ell_{A^{**}}(B^{**})$ and moreover if $B$ is an unital as Banach $A-module$, then we conclude that $B^{**}{Z}_1({A^{**}})={Z}^\ell_{A^{**}}(B^{**})$. Let ${Z}^\ell_{A^{**}}(B^{**})A\subseteq B$ and suppose that $B$ is $WSC$, so we conclude that ${Z}^\ell_{A^{**}}(B^{**})=B$. If $\overline{B^{*}A}\neq B^*$ and $ B^{**}$ has a left unit $A^{**}-module$, then $Z^\ell_{B^{**}}(A^{**})\neq A^{**}$. We will also establish some relationships of Arens regularity of Banach algebras $A$, $B$ and Arens regularity of projective tensor product $A\hat{\otimes}B$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2010
- DOI:
- arXiv:
- arXiv:1007.3110
- Bibcode:
- 2010arXiv1007.3110H
- Keywords:
-
- Mathematics - Functional Analysis;
- F.2.2;
- I.2.7