Embedding spanning trees in random graphs
Abstract
We prove that if T is a tree on n vertices wih maximum degree D and the edge probability p(n) satisfies: np>c*max{D*logn,n^{\epsilon}} for some constant \epsilon>0, then with high probability the random graph G(n,p) contains a copy of T. The obtained bound on the edge probability is shown to be essentially tight for D=n^{\Theta(1)}.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2010
- DOI:
- arXiv:
- arXiv:1007.2326
- Bibcode:
- 2010arXiv1007.2326K
- Keywords:
-
- Mathematics - Combinatorics;
- 05C80
- E-Print:
- 8 pages