Quantum Annealing with the Jarzynski Equality
Abstract
We show a practical application of the Jarzynski equality in quantum computation. Its implementation may open a way to solve combinatorial optimization problems, minimization of a real single-valued function, cost function, with many arguments. We consider to incorporate the Jarzynski equality into quantum annealing, which is one of the generic algorithms to solve the combinatorial optimization problem. The ordinary quantum annealing suffers from nonadiabatic transitions whose rate is characterized by the minimum energy gap Δmin of the quantum system under consideration. The quantum sweep speed is therefore restricted to be extremely slow for the achievement to obtain a solution without relevant errors. However, in our strategy shown in the present study, we find that such a difficulty would not matter.
- Publication:
-
Physical Review Letters
- Pub Date:
- July 2010
- DOI:
- 10.1103/PhysRevLett.105.050401
- arXiv:
- arXiv:1007.1277
- Bibcode:
- 2010PhRvL.105e0401O
- Keywords:
-
- 05.30.-d;
- 02.10.Ox;
- 03.67.Ac;
- 05.90.+m;
- Quantum statistical mechanics;
- Combinatorics;
- graph theory;
- Quantum algorithms protocols and simulations;
- Other topics in statistical physics thermodynamics and nonlinear dynamical systems;
- Quantum Physics;
- Condensed Matter - Disordered Systems and Neural Networks;
- Condensed Matter - Statistical Mechanics
- E-Print:
- 4 pages, to appear in Phys. Rev. Lett