Existence of an absolute minimizer via Perron's method
Abstract
In this paper the existence of an absolute minimizer for a functional \[ F(u,\Omega) = \underset{x \in \Omega}{\text{ess sup}} \, f (x, u(x), Du(x)) \] is proved by using Perron's method. The function is assumed to be quasiconvex and uniformly coercive. This completes the result by Champion, De Pascale and Prinari.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2010
- DOI:
- arXiv:
- arXiv:1004.5008
- Bibcode:
- 2010arXiv1004.5008J
- Keywords:
-
- Mathematics - Analysis of PDEs