Minoration du spectre des variétés hyperboliques de dimension 3
Abstract
Let $M$ be a compact hyperbolic 3-manifold of diameter $d$ and volume $\leq V$. If $\mu_i(M)$ denotes the $i$-th egenvalue of the Hodge laplacian acting on coexact 1-forms of $M$, we prove that $\mu_1(M)\geq \frac c{d^3e^{2kd}}$ and $\mu_{k+1}(M)\geq \frac c{d^2}$, where $c>0$ depends only on $V$, and $k$ is the number of connected component of the thin part of $M$. Moreover, we prove that for any finite volume hyperbolic 3-manifold $M_\infty$ with cusps, there is a sequence $M_i$ of compact fillings of $M_\infty$ of diameter $d_i\to+\infty$ such that $\mu_1(M_i)\geq \frac c{d_i^2}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2010
- DOI:
- arXiv:
- arXiv:1003.3645
- Bibcode:
- 2010arXiv1003.3645J
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematics - Spectral Theory;
- 35P15;
- 58J50
- E-Print:
- 20 pages, 1 figure, in french