Riesz transform characterization of H^1 spaces associated with certain Laguerre expansions
Abstract
For alpha>0 we consider the system l_k^{(alpha-1)/2}(x) of the Laguerre functions which are eigenfunctions of the differential operator Lf =-\frac{d^2}{dx^2}f-\frac{alpha}{x}\frac{d}{dx}f+x^2 f. We define an atomic Hardy space H^1_{at}(X), which is a subspace of L^1((0,infty), x^alpha dx). Then we prove that the space H^1_{at}(X) is also characterized by the Riesz transform Rf=\sqrt{\pi}\frac{d}{dx}L^{-1/2}f in the sense that f\in H^1_{at}(X) if and only if f,Rf \in L^1((0,infty),x^alpha dx).
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2010
- DOI:
- arXiv:
- arXiv:1002.3319
- Bibcode:
- 2010arXiv1002.3319P
- Keywords:
-
- Mathematics - Functional Analysis;
- 42B30 (primary);
- 42B35;
- 42B20 (secondary)
- E-Print:
- doi:10.1016/j.jat.2011.10.004