Integrable Euler top and nonholonomic Chaplygin ball
Abstract
We discuss the Poisson structures, Lax matrices, $r$-matrices, bi-hamiltonian structures, the variables of separation and other attributes of the modern theory of dynamical systems in application to the integrable Euler top and to the nonholonomic Chaplygin ball.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2010
- DOI:
- 10.48550/arXiv.1002.1123
- arXiv:
- arXiv:1002.1123
- Bibcode:
- 2010arXiv1002.1123T
- Keywords:
-
- Nonlinear Sciences - Exactly Solvable and Integrable Systems;
- Mathematical Physics;
- Mathematics - Dynamical Systems;
- Physics - Classical Physics;
- 34D20;
- Secondary: 70E40;
- 37J35
- E-Print:
- 25 pages, LaTeX with AMS fonts, final version