Modelling the steady state spectral energy distribution of the BL-Lac Object PKS 2155-30.4 using a selfconsistent SSC model
Abstract
In this paper we present a fully selfconsistent SSC model with particle acceleration due to shock and stochastic acceleration (Fermi-I and Fermi-II-Processes respectively) to model the quiescent spectral energy distribution (SED) observed from PKS 2155. The simultaneous August/September 2008 multiwavelength data of H.E.S.S., Fermi, RXTE/SWIFT and ATOM give new constraints to the high-energy peak in the SED concerning its curvature. We find that, in our model, a monoenergetic injection of electrons at γ0=910 into the model region, which are accelerated by Fermi-I- and Fermi-II-processes while suffering synchrotron and inverse Compton losses, finally leads to the observed SED of PKS 2155-30.4 shown in H.E.S.S. and Fermi-LAT collaborations (2009). In contrast to other SSC models our parameters arise from the jet's microphysics and the spectrum is evolving selfconsistently from diffusion and acceleration. The γ0-factor can be interpreted as two counterstreaming plasmas due to the motion of the blob at a bulk factor of Γ=58 and opposed moving upstream electrons at moderate Lorentz factors with an average of γu≈8.
- Publication:
-
Astrophysics and Space Sciences Transactions
- Pub Date:
- January 2010
- DOI:
- 10.5194/astra-6-1-2010
- arXiv:
- arXiv:1001.2145
- Bibcode:
- 2010ASTRA...6....1W
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Extragalactic Astrophysics
- E-Print:
- 4 figures