Cosmology with equivalence principle breaking in the dark sector
Abstract
A long-range force acting only between nonbaryonic particles would be associated with a large violation of the weak equivalence principle. We explore cosmological consequences of this idea, which we label ReBEL (daRk Breaking Equivalence principLe). A high resolution hydrodynamical simulation of the distributions of baryons and dark matter confirms our previous findings that a ReBEL force of comparable strength to gravity on comoving scales of about 1h-1Mpc causes voids between the concentrations of large galaxies to be more nearly empty, suppresses accretion of intergalactic matter onto galaxies at low redshift, and produces an early generation of dense dark-matter halos. A preliminary analysis indicates the ReBEL scenario is consistent with the one-dimensional power spectrum of the Lyman-Alpha forest and the three-dimensional galaxy autocorrelation function. Segregation of baryons and DM in galaxies and systems of galaxies is a strong prediction of ReBEL. ReBEL naturally correlates the baryon mass fraction in groups and clusters of galaxies with the system mass, in agreement with recent measurements.
- Publication:
-
Physical Review D
- Pub Date:
- March 2010
- DOI:
- arXiv:
- arXiv:0912.4177
- Bibcode:
- 2010PhRvD..81f3521K
- Keywords:
-
- 98.80.-k;
- Cosmology;
- Astrophysics - Cosmology and Extragalactic Astrophysics;
- Astrophysics - Galaxy Astrophysics;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- Accepted for publication in PRD. 18 Pages, 19 Figures, 1 Table