Hausdorff measure of quasicircles
Abstract
S. Smirnov proved recently that the Hausdorff dimension of any K-quasicircle is at most 1+k^2, where k=(K-1)/(K+1). In this paper we show that if $\Gamma$ is such a quasicircle, then $H^{1+k^2}(B(x,r)\cap \Gamma)\leq C(k) r^{1+k^2}$ for all x in \C and r>0, where H^s stands for the s-Haudorff measure. On a related note we derive a sharp weak-integrability of the derivative of the Riemann map of a quasidisk.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2009
- DOI:
- 10.48550/arXiv.0912.3365
- arXiv:
- arXiv:0912.3365
- Bibcode:
- 2009arXiv0912.3365P
- Keywords:
-
- Mathematics - Complex Variables;
- 30C62
- E-Print:
- 15 pages