Groupe de Brauer et points entiers de deux familles de surfaces cubiques affines
Abstract
Let a be a nonzero integer. If a is not congruent to 4 or 5 modulo 9 then there is no Brauer-Manin obstruction to the existence of integers x, y, z such that x^3+y^3+z^3=a. In addition, there is no Brauer-Manin obstruction to the existence of integers x, y, z such that x^3+y^3+2z^3=a.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2009
- DOI:
- arXiv:
- arXiv:0911.3539
- Bibcode:
- 2009arXiv0911.3539C
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Algebraic Geometry
- E-Print:
- 24 pages