On the Geometry of Spaces of Oriented Geodesics
Abstract
Let M be either a simply connected pseudo-Riemannian space of constant curvature or a rank one Riemannian symmetric space (other than the octonion hyperbolic plane), and consider the space L(M) of oriented geodesics of M. The space L(M) is a smooth homogeneous manifold and in this paper we describe all invariant symplectic structures, (para)complex structures, pseudo-Riemannian metrics and (para)Kaehler structure on L(M).
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2009
- DOI:
- arXiv:
- arXiv:0911.2602
- Bibcode:
- 2009arXiv0911.2602A
- Keywords:
-
- Mathematics - Differential Geometry;
- 53A25 (Primary);
- 53B35 (Secondary)
- E-Print:
- 29 pages LaTEX