The Birman-Schwinger principle on the essential spectrum
Abstract
Let $H_0$ and $H$ be self-adjoint operators in a Hilbert space. We consider the spectral projections of $H_0$ and $H$ corresponding to a semi-infinite interval of the real line. We discuss the index of this pair of spectral projections and prove an identity which extends the Birman-Schwinger principle onto the essential spectrum. We also relate this index to the spectrum of the scattering matrix for the pair $H_0$, $H$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2009
- DOI:
- arXiv:
- arXiv:0911.2134
- Bibcode:
- 2009arXiv0911.2134P
- Keywords:
-
- Mathematics - Spectral Theory;
- Mathematics - Functional Analysis;
- 47A40;
- 35P25;
- 47B25;
- 47F05
- E-Print:
- Latex, 24 pages