The Calogero-Moser partition for G(m,d,n)
Abstract
We show that it is possible to deduce the Calogero-Moser partition of the irreducible representations of the complex reflection groups G(m,d,n) from the corresponding partition for G(m,1,n). This confirms, in the case W = G(m,d,n), a conjecture of Gordon and Martino relating the Calogero-Moser partition to Rouquier families for the corresponding cyclotomic Hecke algebra.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2009
- DOI:
- 10.48550/arXiv.0911.0066
- arXiv:
- arXiv:0911.0066
- Bibcode:
- 2009arXiv0911.0066B
- Keywords:
-
- Mathematics - Representation Theory;
- 16G99;
- 05E10
- E-Print:
- 23 pages