The indirect search for dark matter with IceCube
Abstract
We revisit the prospects for IceCube and similar kilometer-scale telescopes to detect neutrinos produced by the annihilation of weakly interacting massive dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of the problem is understood; models can be observed or, alternatively, ruled out. In searching for a WIMP with spin-independent interactions with ordinary matter, IceCube is only competitive with direct detection experiments if the WIMP mass is sufficiently large. For spin-dependent interactions IceCube already has improved the best limits on spin-dependent WIMP cross sections by two orders of magnitude. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while being within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes have the opportunity to play an important as well as complementary role in the search for particle dark matter.
- Publication:
-
New Journal of Physics
- Pub Date:
- October 2009
- DOI:
- 10.1088/1367-2630/11/10/105019
- arXiv:
- arXiv:0910.4513
- Bibcode:
- 2009NJPh...11j5019H
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 17 pages, 10 figures, published in the New Journal of Physics 11 105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version submitted to correct Abstract in original