A generalized quantum nonlinear oscillator
Abstract
We examine various generalizations, e.g. exactly solvable, quasi-exactly solvable and non-Hermitian variants, of a quantum nonlinear oscillator. For all these cases, the same mass function has been used and it has also been shown that the new exactly solvable potentials possess shape invariance symmetry. The solutions are obtained in terms of classical orthogonal polynomials.
- Publication:
-
Journal of Physics A Mathematical General
- Pub Date:
- July 2009
- DOI:
- 10.1088/1751-8113/42/28/285301
- arXiv:
- arXiv:0910.3179
- Bibcode:
- 2009JPhA...42B5301M
- Keywords:
-
- Quantum Physics;
- Mathematical Physics
- E-Print:
- J. Phys. A: Math. Theor. 42 (2009) 285301