Purity results for $p$-divisible groups and abelian schemes over regular bases of mixed characteristic
Abstract
Let $p$ be a prime. Let $(R,\ideal{m})$ be a regular local ring of mixed characteristic $(0,p)$ and absolute index of ramification $e$. We provide general criteria of when each abelian scheme over $\Spec R\setminus\{\ideal{m}\}$ extends to an abelian scheme over $\Spec R$. We show that such extensions always exist if $e\le p-1$, exist in most cases if $p\le e\le 2p-3$, and do not exist in general if $e\ge 2p-2$. The case $e\le p-1$ implies the uniqueness of integral canonical models of Shimura varieties over a discrete valuation ring $O$ of mixed characteristic $(0,p)$ and index of ramification at most $p-1$. This leads to large classes of examples of Néron models over $O$. If $p>2$ and index $p-1$, the examples are new.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2009
- DOI:
- 10.48550/arXiv.0909.0969
- arXiv:
- arXiv:0909.0969
- Bibcode:
- 2009arXiv0909.0969V
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Number Theory;
- 11G10;
- 11G18;
- 14F30;
- 14G35;
- 14G40;
- 14K10;
- 14K15;
- 14L05;
- 14L15;
- 14J20
- E-Print:
- 28 pages. Final version identical (modulo style) to the galley proofs. To appear in Doc. Math