Exact solutions of massive gravity in three dimensions
Abstract
In recent years, there has been an upsurge in interest in three-dimensional theories of gravity. In particular, two theories of massive gravity in three dimensions hold strong promise in the search for fully consistent theories of quantum gravity, an understanding of which will shed light on the problems of quantum gravity in four dimensions. One of these theories is the "old" third-order theory of topologically massive gravity (TMG) and the other one is a "new" fourth-order theory of massive gravity (NMG). Despite this increase in research activity, the problem of finding and classifying solutions of TMG and NMG remains a wide open area of research. In this thesis, we provide explicit new solutions of massive gravity in three dimensions and suggest future directions of research. These solutions belong to the Kundt class of spacetimes. A systematic analysis of the Kundt solutions with constant scalar polynomial curvature invariants provides a glimpse of the structure of the spaces of solutions of the two theories of massive gravity. We also find explicit solutions of topologically massive gravity whose scalar polynomial curvature invariants are not all constant, and these are the first such solutions. A number of properties of Kundt solutions of TMG and NMG, such as an identification of solutions which lie at the intersection of the full nonlinear and linearized theories, are also derived.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 2009
- DOI:
- arXiv:
- arXiv:0907.1973
- Bibcode:
- 2009PhDT.......147C
- Keywords:
-
- High Energy Physics - Theory;
- General Relativity and Quantum Cosmology
- E-Print:
- 31 pages, 7 figures