A Hilbert-type theorem for spacelike surfaces with constant Gaussian curvature in $\mathbb{H}^2\times\mathbb{R}_1$
Abstract
There are examples of complete spacelike surfaces in the Lorentzian product $\mathbb{H}^2\times\mathbb{R}_1$ with constant Gaussian curvature $K\leq -1$. In this paper, we show that there exists no complete spacelike surface in $\mathbb{H}^2\times\mathbb{R}_1$ with constant Gaussian curvature $K>-1$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2009
- DOI:
- arXiv:
- arXiv:0907.1479
- Bibcode:
- 2009arXiv0907.1479A
- Keywords:
-
- Mathematics - Differential Geometry;
- 53C42;
- 53C50
- E-Print:
- First version. May 2009. Final version (August 2009). To appear in the Bulletin of the Brazilian Mathematical Society