Conformal and geometric properties of the Camassa-Holm hierarchy
Abstract
Integrable equations with second order Lax pair like KdV and Camassa-Holm (CH) exhibit interesting conformal properties and can be written in terms of the so-called conformal invariants (Schwarz form). These properties for the CH hierarchy are discussed in this contribution. The squared eigenfunctions of the spectral problem, associated to the Camassa-Holm equation represent a complete basis of functions, which helps to describe the Inverse Scattering Transform (IST) for the Camassa-Holm hierarchy as a Generalised Fourier Transform (GFT). Using GFT we describe explicitly some members of the CH hierarchy, including integrable deformations for the CH equation. Also we show that solutions of some 2+1-dimensional generalizations of CH can be constructed via the IST for the CH hierarchy.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2009
- DOI:
- arXiv:
- arXiv:0907.1107
- Bibcode:
- 2009arXiv0907.1107I
- Keywords:
-
- Nonlinear Sciences - Exactly Solvable and Integrable Systems;
- Nonlinear Sciences - Pattern Formation and Solitons
- E-Print:
- 15 pages